Hypothesis |
---|
$$ \begin{align*} h_{\theta}(x) &= g(\theta^{T}x)=\frac{1}{1+e^{-\theta^{T}x}} \\ &= P(y=1|x;\theta) \end{align*} $$ where \(g = \) sigmoid function |
Cost Function |
$$ J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}\left[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m}\sum_{j=1}^{n}\theta_j^{2} $$ |
Algorithms |
|